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The spin-1
2 Heisenberg antiferromagnet on the distorted honeycomb �DHC� lattice is studied by means of the

tensor renormalization-group method. It is unveiled that the system has a quantum phase transition of second
order between the gapped quantum dimer phase and a collinear Néel phase at the critical point of coupling ratio
�c�0.54, where the quantum critical exponents ��0.69�2� and ��1.363�8� are obtained. The quantum
criticality is found to fall into the O�3� universality class. A ground-state phase diagram in the field-coupling
ratio plane is proposed, where the phases such as the dimer, semiclassical Néel, and polarized phases are
identified. A link between the present spin system to the boson Hubbard model on the DHC lattice is also
discussed.
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I. INTRODUCTION

Since the discovery of high-temperature superconductors,
the two-dimensional �2D� Heisenberg models have received
particular attention in the past decades. Several numerical
works show that the spin-1

2 isotropic Heisenberg antiferro-
magnet �HAF� on a square lattice exhibits an AF long-range
order �LRO� in the ground state,1,2 although a mathemati-
cally rigorous proof still lacks now. Various methods �e.g.,
the spin-wave analysis,3 different numerical techniques,4

etc.� were also applied to investigate the properties of this
model. When the bond anisotropy is introduced, the mag-
netic order-disorder quantum phase transition �QPT� can be
identified.5–9 Another intriguing 2D bipartite lattice—the
honeycomb �HC� lattice has also been studied with various
methods, such as quantum Monte Carlo �QMC�,1 series
expansion,10 spin wave,11 and newly proposed tensor
renormalization-group �TRG� method.12 These investigations
show that owing to the lowest coordinates among 2D lat-
tices, the system is more affected by quantum fluctuations,
giving rise to the spontaneous magnetization per site of the
spin-1

2 HAF model on this lattice smaller than that on a
square lattice.

Recently, people have obtained a number of magnetic
materials with distorted HC �DHC� lattices, such as
MnPS3 and FePS3,13 Cu2/3V1/3O3,14 Na3Cu2SbO6,15 and
Mn�C10H6�OH��COO��2�2H2O,16 where the magnetic ions
�e.g., Cu+2 and Mn+2� form a HC lattice with different
nearest-neighbor �NN� bonds. The magnetic properties of
these materials have been investigated experimentally. How-
ever, the theoretical studies on the HAF model on the DHC
lattice are still sparse. There is a recent work that explores
the ground-state properties of the Heisenberg model on a
DHC lattice by QMC calculations,17 and the order-disorder
QPT in zero magnetic field has been observed. Nevertheless,
the magnetic properties of the model on such a DHC lattice
in nonzero external fields are not yet seen in literature.
Therefore, in order to understand the experimental observa-
tions profoundly, it should pay more theoretical attention on
the HAF model on the DHC lattice.

In this paper, by means of the recently developed TRG
method and a variational analysis, we shall study the ground-

state properties of the spin-1
2 HAF model on the DHC lattice

with and without magnetic fields. On one hand, our primary
purpose is to understand the ground-state properties of the
model under consideration in the presence of a magnetic
field, and on the other hand, we also want to test the accu-
racy of TRG methods in a more extensive range rather than a
spatially bond isotropic case by comparing our calculated
results with the previous studies on HC and DHC lattices
using other methods. Owing to the limitation of the present
TRG scheme, a finite-temperature calculation on the Heisen-
berg model is still not feasible now, which makes it impos-
sible to compare directly the calculated results with the ex-
periments. Our study shows that the spin-1

2 Heisenberg
model on a DHC lattice has a second-order QPT with respect
to the bond coupling ratio, that is determined to fall into the
O�3� universality class by identifying the two quantum criti-
cal exponents. A phase diagram separating the dimer, polar-
ized, canted Néel, and Néel phases is also proposed. The
magnetic properties in the presence of a magnetic field are
obtained, where some interesting behaviors are observed. In
addition, the TRG method has been verified through this
present model to give a good agreement with most of the
previous studies, but it might overestimate slightly the spon-
taneous sublattice magnetization per site on the HC lattice,
implying that the TRG method may still need more works for
improvements.

The other parts of this paper are organized as follows. In
Sec. II, the model Hamiltonian and the TRG method will be
introduced. In Sec. III, the magnetic properties of the model
under interest in the absence of a magnetic field will be re-
examined with the TRG algorithm. In Sec. IV, the ground-
state properties in the presence of a magnetic field will be
explored, and a phase diagram will be proposed. In Sec. V,
by invoking a boson mapping, the present model is mapped
onto the 2D boson Hubbard model, whose properties will be
briefly discussed. Finally, a conclusion will be given.

II. MODEL HAMILTONIAN AND NUMERICAL METHOD

The system under interest is schematically depicted in
Fig. 1. The Hamiltonian reads
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H = J �
�i, j�x

Si · S j + J� �
�i, j�yz

Si · S j − h�
i

Si
z − hs�

i

�iSi
z, �1�

where Si denotes the spin-1
2 operator at site i, �i , j�x labels the

NN spins along the rungs �x bond�, �i , j�yz means the NN
spins along the zigzag directions �y and z bonds�, J is the
interaction on the x bond, J� is the coupling on y or z bond,
h and hs stand for the uniform and staggered magnetic fields,
respectively, and �i=+1 when i on A sublattice and −1 on B
sublattice. We introduce for convenience a bond-coupling ra-
tio �=J� /J and take J as an energy scale.

To explore the ground-state properties of the present sys-
tem we shall utilize the TRG method. This numerical algo-
rithm was first introduced to calculate the thermodynamic
properties of the 2D classical models,18 and then generalized
to obtain the expectation values of observables in the quan-
tum state with the tensor product wave functions �e.g., Ref.
12� on bipartite lattices given by

	�� = �

xi,yi,zi=1�

D

�
i�A,j�B

�TA�xi,yi,zi

mi �TB�xj,yj,zj

mj 	mimj� , �2�

where TA�TB� represents the tensor located on A�B� sublat-
tice, over which the indices i and j run, and the summation
over all bond indices x, y, and z is from 1 to the bond di-
mension D. According to the TRG algorithm, the ground-
state wave function and energy can be directly obtained by
using trial wave functions of tensor product form.19 This
variational scheme, however, is not so efficient that makes
the achievable bond dimension D not larger than three, in
general, due to huge variational parameter space. Recently, it
was improved by combining the infinite time-evolving block
decimation �iTEBD� �Ref. 20� and TRG method to determine
the ground state and to get the expectation values of local
observables.12 This alternative algorithm appears to be accu-
rate and efficient, in which the available bond dimension D
can reach as large as eight, and the calculated results agree
well with those obtained by other methods. It has been ap-
plied to study the spin-flop transition of spin-1

2 XXZ model
on a square lattice.21 In the following, we shall adopt this
novel scheme to calculate the physical quantities of the
spin-1

2 HAF system on the DHC lattice.
In our practical calculations, during the iterative projec-

tions by evolution operator �e−�H� along the imaginary time �
axis, we first start with a step ��=10−3, and then diminish it
gradually to ��=10−5. The total number of iterations is taken

as about 105–106, where D=5 or 6 is generally chosen. The
convergence is always checked, as shown in Fig. 2�a� for
different bond dimensions D.

III. MAGNETIC ORDER-DISORDER TRANSITION

Let us first consider the case in absence of a magnetic
field �h=0 and hs=0�. When �=0, the spins are coupled only
by J along x bonds, and the ground state is 	�g�
=�i�A

1

2 �	↑i↓i+x�− 	↓i↑i+x�� with energy −0.75 J per bond,

which is usually termed as a dimer state. This disordered
ground state is protected by a finite spin singlet-triplet gap.
When J� is set in, but � is still small, one may conceive that
the system may retain in the dimer phase.5 This is confirmed
in Fig. 2�a�, where the spontaneous sublattice magnetization
per site, mz,A�B�=

1
NA�B�

�i�A�B��Si
z� with NA�B� the total number

of sublattice A�B� sites, as a function of � is presented for
D=3, 4, 5, and 6. It is seen that there exists a critical ratio �c
below which mz,A�B� vanishes, showing that the ground state
for �	�c is disordered and dominated by quantum fluctua-
tions. For �
�c, the ground state of the system has an
AFLRO owing to a spontaneous SU�2� symmetry breaking.
To determine the value of �c with accuracy, we have calcu-
lated the derivative of 	mz,A�B�	 with respect to � for D=6 and
found a discontinuity at �=�c, where �c can be readily de-
termined as 0.54.

To confirm if the transition occurring at �c is a QPT, we
have also studied the ground-state energy per site e as a
function of �. The results are presented in Fig. 2�b�. It may
be observed that with increasing �, both e and its first de-
rivative �e /�� versus � decrease continuously, but the sec-
ond derivative �2e /��2 against � shows a discontinuity at
�c�0.54, as seen from the insets of Fig. 2�b�. This feature
characterizes a typical QPT of second order.

It should be noted that, as shown in Fig. 2�a�, we get
	mz,A�B�	�0.32 �D=6� for �=1, which appears to overesti-
mate the spontaneous sublattice magnetization per site on the
HC lattice in comparison to the recent stochastic series-
expansion QMC result 0.2681�8� �Ref. 22�, the “world line”
QMC result 0.22 �Ref. 1�, series expansion 0.27 �Ref. 10�,

x

z

y

y

z
TA TB

J
J’

J’

FIG. 1. �Color online� The distorted honeycomb lattice can be
viewed as a tensor network, where TA�TB� are the tensors located on
A�B� sublattice �indicated by different symbols�, and each tensor
has three bond indices labeled by x, y, and z. FIG. 2. �Color online� �a� The spontaneous sublattice magneti-

zation per site 	mz,A�B�	 as a function of the bond ratio � for different
bond dimensions D=3, 4, 5, and 6. The dashed-dotted line repre-
sents the mean-field result �Eq. �5��. The inset gives the derivative
of 	mz,A�B�	 as a function of �, where a discontinuity at �c�0.54 is
observed. �b� The ground-state energy per site e and its derivatives
�insets: first and second order� versus �, where the discontinuity in
�2e /��2 against � indicates a QPT of second order.
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and the spin-wave result 0.24 �Ref. 11�. Such a discrepancy
on mz,A�B� has also been noted in Ref. 23, where they re-
ported the sublattice magnetization per site on the HC lattice
to be 0.3098 for D=16 by the TRG calculations. This slight
discrepancy on the sublattice magnetization per site may
come from the underestimation of quantum fluctuations in
the absence of a magnetic field in the assumption of the
tensor-product state employed in the TRG method, because
the isotropic system at �=1 is gapless and has long-range
correlations, where the quantum fluctuations may be strong.
However, the ground-state energy per site we obtained
�−0.5465� for �=1 �D=6� is quite consistent with those ob-
tained for the HC lattice by other methods, e.g., the QMC
result −0.5450 �Ref. 1�, series expansion −0.5443 �Ref. 10�,
and the spin-wave result −0.5489 �Ref. 11�. Therefore, as the
critical point determined by the spontaneous sublattice mag-
netization �Fig. 2�a�� coincides with that obtained from the
singularity of the ground-state energy �Fig. 2�b��, it shows
that the critical point is determined with rather assurance. In
the presence of a magnetic field, since the quantum fluctua-
tions are much suppressed, the results given by the TRG
method should be reliable. This can also be validated in the
following studies, including the attained linear behavior of
the magnetization curves immediately above the critical
magnetic field hc �Fig. 3�a�� and the verified relation Hsat
=2S�2�+1� of the saturation line that separates the canted
Néel phase and polarized phase in Fig. 4, which is also con-
sistent with that derived from the classical energy of spin-
wave analysis by a variational scheme.3,16 Another fact is
that when the critical exponents of � and � are determined
�in Sec. IV�, the critical point is approached from the dimer
phase, and hence it is independent of the magnitude of spon-
taneous sublattice magnetization in the Néel phase. The ob-
tained � and � agree well with previous calculations and
theoretical predictions, showing again that TRG method is
fairly feasible for the present case.

In order to examine our numerical results, we perform a
mean-field treatment in terms of a simple variational trial
wave function

	�var� = �
i�A

1

1 + t2

�	↑i↓i+x� − t	↓i↑i+x�� , �3�

that was applied to describe both disordered and ordered
phases on a dimerized square lattice6 and in a bilayer
system,24 where the lattice sites i and i+x are NN sites along
x bonds and t is a variational parameter and interpolates be-
tween a singlet collection �t=1� and a classical Néel state
�t=0�. Substituting Eq. �1� �with h ,hs=0� and Eq. �3� into
Evar= ��var	H	�var� and minimizing it with respect to t, we
obtain an upper bound for the ground-state energy as

Evar/NJ = �− 3/8 for � � 0.5,

−
1

16
�1/� + 4� + 2� for � 
 0.5,� �4�

where N=NA+NB is the total number of lattice sites. Obvi-
ously, Evar is singular at �c,var=0.5, showing �c,var, that is
close to �c=0.54, may be a transition point. The variational
sublattice magnetization per site mvar
= �1 /NA��i�A��var	Si

z	�var� can be obtained by

mvar = �0 for � � 0.5,

1

4

− 1/�2 + 4 for � 
 0.5,� �5�

which indicates that the derivative of mvar is discontinuous at
�=0.5, suggesting a discorder-order phase transition at
�c,var. A comparison of mvar to the TRG result is given in
Fig. 2�a�, where mvar shows a behavior similar to the TRG
results.

IV. GROUND-STATE PHASE DIAGRAM AND CRITICAL
EXPONENTS IN PRESENCE OF A MAGNETIC

FIELD

Now we turn the uniform magnetic field h on. The mag-
netization curves for different � are given in Fig. 3. It is clear
that for �	�c, there exists a magnetization plateau with
mz=0, where mz= �1 /N��i�Si

z� is the magnetization per site,
implying the existence of a finite spin gap, as shown in Fig.

FIG. 3. �Color online� The magnetization per site as a function
of magnetic field h. The insets show the susceptibility � �upper
panel� and the transverse component of sublattice magnetization per
site 	mx,A�B�	 �lower panel� as functions of h. �a� �=0.3; �b� �=0.6,
where D=5 and hs=0 for both. The fitting curves in �a� shows a
nearly linear behavior of mz with 
�0.98�1�. The number in the
parenthesis denotes numerical fitting error hereafter.

FIG. 4. �Color online� The ground-state phase diagram of the
spin-1

2 HAF system on the DHC lattice in �-h plane, where three
phases �dimer, semiclassical Néel, and polarized� are identified, and
the collinear Néel phase marked by the star line inhabits exactly on
the � axis �h=0�. The fitting curves reveal the critical behavior in
the region �� �0.45,0.51�.
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3�a� for �=0.3. At �=0, such a gap is nothing but the spin
singlet-triplet gap which equals J. For 0	���c, the spin
gap will decrease and vanish eventually at �=�c. For a given
�	�c, the spin gap closes at a critical field hc. For h�hc,
we find that the magnetization depends almost linearly on the
magnetic field, behaving mz�	h−hc	
 with hc=0.604, 

=0.98�1� for �=0.3 and D=5. Our result is consistent with
the theoretical prediction 
=1.0 in 2D and higher quantum
spin systems.5 Nonetheless, it is in sharp contrast to the cases
of gapped one-dimensional Heisenberg spin systems where it
is observed a square-root dependence of mz�	h−hc	1/2 that
characterizes the commensurate-incommensurate phase
transition.25 For other �	�c, such an almost linear depen-
dence was also noted. The susceptibility, �=�mz /�h, as a
function of the magnetic field h is shown in the upper inset
of Fig. 3�a�. Two discontinuous points in � versus h are seen,
namely, one at the point hc where the spin gap closes, and the
other at the saturation field. We have also explored the trans-
verse component of sublattice magnetization per site, mx,A
= 1

NA
�i�A�Si

x�, against the magnetic field h, as given in the
lower inset of Fig. 3�a�. For �	�c, mx,A vanishes for h
�hc, while it increases sharply when h exceeds hc, and after
reaching a round peak it declines steeply and vanishes at the
saturation field. This observation shows that, with increasing
the field, there exists a transition from the disordered dimer
phase to a canted Néel phase �spin-flop phase�3,4,21 that is
characterized by nonzero values of both mz and mx,A, where
the spins align antiferromagnetically within the xy plane and
develop a uniform z component along the field, thus canting
out of the plane. For �
�c, the magnetization curves behave
differently from those with �	�c, as presented in Fig. 3�b�
for �=0.8 as an example. With increasing the magnetic field,
the magnetization mz increases monotonously till the satura-
tion, while the transverse component of magnetization mx,A
first increases slowly, then drops sharply and vanishes even-
tually at the saturation field. The susceptibility � increases
slowly with increasing the field and then decreases steeply to
zero at the saturation field.

By summarizing the above observations, a ground-state
phase diagram of the system in the �-h plane can be drawn,
as presented in Fig. 4, where the phase boundaries are deter-
mined by the transition points in Figs. 2 and 3. One may see
that there are three phases, namely, the dimer phase, the
semiclassical Néel phase �including canted and collinear
Néel states�, and the polarized phase. At �=�c, there is a
QPT from the disordered dimer phase to the collinear Néel
phase. Note that the lower phase boundary between dimer
and canted Néel phases is determined by observing the spin
gap � that is obtained by calculating the width of zero-
magnetization plateau for various � as presented in Fig. 3�a�.
The critical behavior of the spin gap in the dimer phase in
the vicinity of �c is fitted by the least-squares method with
����−�c��, where �c�0.54, as shown in Fig. 4. The criti-
cal exponent is found to be ��0.69�2� by the linear fit, as
shown in Fig. 5. It is close to the standard O�3� value of
0.7112�5� �e.g., Refs. 5, 8, and 26�. In comparison to the
result �c=0.27 of the nonlinear � model method27 and the
variational result �c,var=0.5 obtained through Eq. �3�, the
present TRG result is closer to �c=0.576 and �=0.707 of
QMC calculations.17 As expected, owing to its lower coordi-

nates, the disordered region on the DHC lattice is wider than
that on a square lattice where �c=0.397.9

In the presence of a staggered magnetic field hs, the stag-
gered magnetization per site, mz

s= �1 /N��i�i�Si
z�, as a func-

tion of hs for different � is presented in Fig. 6, where h=0.
With increasing hs, mz

s increases monotonously from zero for
�	�c, while for �
�c, mz

s starts from a nonzero value,
implying again that the system has a spontaneous AFLRO
for larger �. The inverse of staggered susceptibility �s
=�mz

s /�hs as a function of � is presented in the inset of Fig.
6 for h=0 and a very small hs. The critical behavior of the
zero-field staggered susceptibility �s is expected to diverge
as 	�−�c	−� near the critical point �c, where the nonlinear
curve fitting gives �c�0.542�1� and the log-log plot in the
inset shows the critical exponent ��1.363�8�, which agree
with �c obtained through the spin gap and the O�3� value of
�=1.373�3�,26 respectively. According to the obtained criti-
cal exponents 
 and �, it is seen that the quantum criticality
of the present system falls into the O�3� universality class.
Similar calculations indicate that the transition between
dimer and canted Néel phases have the same critical expo-
nents 
 and � as that of the dimer-collinear Néel phase tran-
sition at h=0. Hence, they also belong to the same O�3�
universality class.

FIG. 5. �Color online� The log-log plot of spin gap � versus � in
the critical region �� �0.45,0.51�, where the linear fit gives the
critical exponent ��0.69�2�.

FIG. 6. �Color online� The staggered magnetization per site mz
s

as a function of the staggered magnetic field hs for h=0. The inset
is 1 /�s against �, where the fitting curve is obtained at a small field
hs=0.001J.
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V. RELATION TO THE 2D BOSON HUBBARD MODEL

Finally, we would like to mention briefly that the present
spin-1

2 system has a link with the 2D boson Hubbard model.
By performing the hard-core boson mapping28 with ai

†→Si
+,

ai→Si
−, ni→Si

z+1 /2, and making a rotation of spins by �
along the z axis on one sublattice, one can obtain, from Eq.
�1� with hs=0, the Hamiltonian of hard-core bosons

Hb = �
�i, j�x

�− t�ai
†aj + aj

†ai� + U�ni − 1/2��nj − 1/2��

+ �
�i, j�yz

�− t��ai
†aj + aj

†ai� + U��ni − 1/2��nj − 1/2��

− ��
i

�ni − 1/2� , �6�

where t=U=J, t�=U�=J�, and �=h. It is the boson Hubbard
model on the DHC lattice, whose behavior can be well un-
derstood in accordance with the aforementioned correspond-
ing Heisenberg spin system. With the above mapping, owing
to the nonvanishing sublattice magnetization 	mx,A�B�	 in x-y
plane �see the inset of Fig. 3�, the canted Néel phase in the
spin system corresponds to the boson superfluid phase with
off-diagonal LRO �ODLRO� �Refs. 21 and 29� in the boson
Hubbard model for t� / t=U� /U
0.54 on the DHC lattice.
For t� / t=U� /U	0.54, the disordered dimer phase in the
spin system is mapped onto a liquid state with neither
ODLRO nor DLRO. Therefore, the boson Hubbard model on
the DHC lattice has a QPT from the boson liquid to a super-
fluid. The spin-polarized phase becomes a Mott insulator

phase with one boson occupying each site in the mapped
boson system, and hence, there also exists a superfluid-Mott
insulator transition.

VI. CONCLUSION

In conclusion, the spin-1
2 HAF model on the DHC lattice

is studied by means of the combined iTEBD and TRG algo-
rithm, where the ground-state phase diagram is obtained. It is
uncovered that there is a second-order QPT from the disor-
dered dimer phase to the ordered collinear Néel phase at
�c�0.54, where the critical exponents ��0.69�2� and �
�1.363�8� are determined. This QPT belongs to the standard
O�3� universality class. In addition, through a boson map-
ping, the present HAF system has a link with the boson
Hubbard model on the DHC lattice. The properties of the
latter boson Hubbard model can thus be understood in terms
of the present study. We expect that our findings are not only
useful for understanding experimental observations of the
antiferromagnets with DHC lattices but also is helpful for the
corresponding 2D boson Hubbard model.
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